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Anotace:

V první části příspěvek popisuje základní termíny teorie chaosu a dynamiky populace. V poslední části je analyzováno chování trhu s hovězím a vepřovým masem. Oba trhy se chovají dosti odlišně a je možné zde vysledovat oblasti s chaotickým chováním. Aby tyto závěry mohly být potvrzeny nebo vyvráceny, bude třeba je dále zkoumat.

Summary: 

In the first part the contribution describes basic terms of chaos theory and dynamics of population. In the last part it is analysed  the behaviour of markets of beefy and pork meat. Both markets behave rather different and it is possible to observe areas with chaotic behaviour there. These conclusions will necessitate further investigations for their acknowledgement or the refutation.
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In the late 1970s Drucker characterised our epoch as turbulent. His inspiration was in the comparison of society conditions with the known physical idea. The analogy was visible. The term turbulent anticipates the other word - the chaos. In many cases the chaotic behaviour is frequent, but it is rather difficult to diagnose the chaos in time series see Halbich (1997).

Our era is characterised by different phenomena too (global marketplaces, changing customers demands and accelerating environmental dynamics and technological development). The organisation’s capability of rapid reactions on environmental dynamics becomes the most critical success factor in this world of constant changes. Topic of this contribution would like to bring some inspiration for managers for its practice lead to success.

But in our world all phenomena are not turbulent. There exist some continuous processes for example the prominence of processors increases twice each two years (by Moor’s law) since late sixties. But it seems, that the software maybe do not increases by the same speed as so as hardware, even skills and knowledge of users practically certainly do not increase by the same speed as so as the hardware. But it is the other topic for the different contribution.

Introduction to the chaos theory

Studies of non-linear phenomena which occur in mathematical models and which are observed in experiments profit both from a general knowledge of the theory of dynamical systems and bifurcations, and from the experience accumulated in an interpretation of specific examples. The most interesting and important non-linear phenomenon that has come to prominence recently is the chaotic behaviour of deterministic dissipative systems. The investigation of chaotic dynamics has undergone an explosive development over the past twenty years, but no often in area of economics.

The number of interested students and research workers from diverse fields, ranging from mathematics and physics to engineering sciences and biology, increases continuously and we want to go with our application in the main stream of this theory.

Observations of both natural and man-made systems evolving in time reveal an existence of various types of dynamics ranging from steady time-independent structures to very complicated nonperiodic oscillations. It can exist in systems of different physical nature where oscillations occur, for example in mechanical vibrations, electronic circuits, chemical reactions, neurones, ecological systems, celestial mechanics, etc.

An interpretation of experimental observations is closely coupled with the fast-developing theory of non-linear dynamical systems. A typical mathematical model of an evolution process is in the form of a differential equation

dx/dt= ( (x,),
 x ( Rn 
(1)

where the real variable t denotes time and  is a parameter. A state of the system (1) at a given time is determined by a point x in the state space Rn. Evolution of the variable x in time is given by solution of Eq.(1). A discrete time evolution process can be described by a similar difference equation, where the time is discrete.

Actual states of the above systems are described by the vector variable X consisting of n independent components. However, the state variable is spatially distributed in the fluid flow as well as in a number of other systems. The state space then has an infinite dimension and the mathematical model is then formed by a system of partial differential equations.

 If the evolution equations in the form (1) are linear, then their solutions may be expressed in an explicit way and the evolution dynamics is relatively simple. It has become evident in the course of the last 20 years that even very simple but non-linear equations can possess solutions, which from the statistical point of view look like random ones, although they are generated by a deterministic system. This behaviour is now called deterministic chaos and is generally believed to represent a valid model of low-dimensional turbulent behaviour in systems of various physical nature. There exists several typical ways of transition to chaos, the best known is the period-doubling route.

Physical, chemical, biological or social phenomena can be seen as systems characterised by a time evolution of their properties see Eq. (1). Such evolution systems are ubiquitous in nature. Often we are able to express the rate of change of the properties of a considered evolution system in the form of equations, applying and combining the relevant laws of nature. Solutions of the constructed mathematical model then mimic the time evolution of the real system(see later market with beefy meat).

Our aim or manager’s aim is to predict this evolution using a proper mathematical model. An instantaneous state of the model system can be given by a finite set of numbers or by a finite set of functions. A set of all states of the system will be called a state space (or phase space). A system will be considered as deterministic if its future and past are fully determined by its current state. A system of bodies moving according to laws of classical mechanics, electronic circuits or interacting populations in a closed ecological system may be considered as deterministic systems.

The dynamics of populations

A very important example of a system in which chaos may occur, comes from population biology. Let us consider a species of fish in an isolated  lake. If the lake is large enough, the population will increase until the lake becomes overcrowded. Lack of food will cause the population to decrease, until it reaches a minimum. Since enough food is now available, the number of fish will increase again. After some fluctuations the lake will finally support a steady population. Let us suppose that we have a formula to compute the number of fish in the next population, some fixed time interval later. See

Pop.1( Formula ( Pop. 2 ( Formula ( Pop.3) .............Or: Population ( Formula ( Next population).

This process is called feedback, the computations are called iterations. In this example it is seem certain analogy with the market of beefy meat. The cows behave in their whole system as so as fish. The whole population of fish (and its behaviour) is similar as so as the population of cows, where in Eq. (2) mainly economical conditions determine values of the constant  The investigation of the chaos is not easy in time series and it seems that any author did not make it in our area. Maybe it can get not probably the same profit as so as in cases of analysis of a stock market, a capital market etc.

The Logistic Equation

It appears, that a simple looking formula can be used to compute the number of fish in the next population. If the number of fish at time t is given by Xt
 and the number some fixed time interval later by Xt+1 , then

Xt+1 =  Xt ( 1 - Xt )

(2a)

in which   determines the growth of the population and (1 - Xt ) controls the overcrowding.

We can use this formula in next form too

Xt+1=Xt(a-bXt)


(2b)

the reverse transformation is x=bx/a, where the parameter a is the rate of the population growth and the parameter b is the mortality factor which decreases the effective growth rate in the case of too high population densities. When a ( 1 or a ( 4, then the population density decreases to zero or becomes negative, respectively, which means that the population becomes extinct. This equation is called the Logistic Equation. If we perform the iteration for various values of, we get many interesting results, from convergence to a fixed value to real chaos. See Fig. 1. If  = 2 for instance, the population will settle at a fixed value. If we increase, then suddenly the number will start oscillating between two values. It takes one more time step to arrive at the same value. This phenomenon is known as period doubling. (Fig.1.)



Fig. 1. Feigenbaum’s diagram with period doubling

If we keep increasing, we will find a regime with period 4, it takes four time steps to arrive at the same value again. Again increasing, we encounter another doubling, and another, and another .... until periodicity disappears altogether. Chaos has emerged. Many systems arrive at the chaotic stage through a series of period doubling. May (1976) presents a number of examples ranging from genetic problems to sociology which are modelled by equation of the type (2).

The logistic equation is one of the most often discussed prototypes of the complex behaviour of deterministic systems. Even if the equation looks simple, its solutions may be so complex that we need to use statistical methods for their description. From the mathematical point of view, the function fa(x) maps the interval I(0,1) into itself for 0<a<4. This means that the asymptotic behaviour must be contained in I. Fig.1. shows computer generated orbits for a large number of iterations for a discrete set of values of a, separated by narrow intervals.(Feigenbaum’s diagram). The orbit generated for fixed a approximates an asymptotic limit set. In the scale of Fig. 1. we can observe certain periodic orbits with low periods and also the orbits which seem to be scattered densely in some subintervals of  I. These orbits indicate the complex behaviour of Eq. (2).

However, we can also observe another structure which appears if we follow the dependence of the limit set on a. This structure results from successively repeated bifurcations which cause a self-similarity of the diagram when the scale is increased. The best visible is a sequence of successive period doubling, observable in the interval 3<a< 3.57.

 Here we remark that the chaoticity is implied by a sensitive dependence on initial conditions, which means that two neighbouring points on the attractor(the origin of this substantivum is the verb attract) separate locally exponentially fast with time. Such dynamics lead to an unpredictability if we do not know the initial point with an arbitrary precision.

Chaos has been observed in a large number of both natural and artificial non-linear dissipative dynamical systems. For example, it has been shown in observations and computations of meteorological, patterns in the Earth’s atmosphere that the patterns of evolution are very sensitive to initial conditions and predictions necessarily diverge after several days. These observations can be interpreted as an indication of the presence of a chaotic attractor in the corresponding state space. Also in the studies of populations dynamics it is often observed that the sizes of populations fluctuate widely from one season to the next. This can again be interpreted on the basis of the existence of chaotic trajectories in the population state space.

Recent developments in the theory of non-linear dynamical systems coupled with the use of computers in the acquisition and analysis of long time series of experimental data have supported an exponential increase of detailed studies of various non-linear dissipative systems displaying aperiodic behaviour and lead to both the confirmation of the presence and a detailed characterisation of chaotic attractors.



Fig. 2. Time series of prices on the market of beefy and pork meat 

In experiments (for example the price of beefy meat on the market) we very often observe, record and analyse a scalar variable (flow velocity, temperature, price, etc.), let us denote it x(t). In practice, the overall time of an experiment is finite and data are discrete in time, so that the integrals in formulas are replaced by finite sums. On the background of data from Ministry of Agriculture we created two graphs in Fig. 2. These graphs describe the behaviour of markets with beefy and pork meat (by prices of these sort of meat). The power spectrum (Fig. 3. and 4.) can be computed via Fast Fourier Transform (FFT) algorithm with appropriate windowing to suppress side lobes generated by the finite measurement time. As we know, the emergence of chaotic attractors is connected with characteristic scenarios (the period doubling, the intermittence, transition via torus) are identified in the studied time series, we have again a positive verification of the presence of deterministic chaos.



Fig. 3. The power spectrum of the behaviour of the market of beefy meat



Fig. 4. The power spectrum of the behaviour of the market of pork meat

Both Fig. 3. and Fig. 4. show rather clearly the different behaviour of both markets. While we  describe the behaviour of both markets by May’s equation (2), we will see, that both markets are characterised by different value of . We can explain these facts by different biological characteristics of both animal species (for example the different time of gravidity or the time of fatten) too. These conclusions will necessitate further investigations for their acknowledgement or the refutation.
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